

Epidemiologic Foundation for the Assessment of Genetic Tests

Julian Little
Department of Epidemiology & Community Medicine
University of Ottawa

Genetic test - definition

"the analysis of human DNA, RNA, chromosomes, proteins, and certain metabolites in order to detect heritable disease-related genotypes, mutations, phenotypes, or karyotypes for clinical purposes."

Holtzman & Watson, 1999

Potential applications

- Diagnosis
- Primary screening in general population
- Triage of individuals at high-risk

Evaluation

- Analytic validity
- Clinical validity
- Clinical utility

the accuracy with which a test predicts a clinical outcome

the sensitivity, specificity, and predictive value of a test in relation to a particular phenotype

Holtzman & Watson, 1999

- When a test is used diagnostically, clinical validity measures the association of the test with the current existence of that disorder.
- When a test is used to identify genetic susceptibility, as in genetic screening, clinical validity measures the accuracy with which it predicts a future clinical outcome.

		Disease			
		+	-		
Test	+	True positive (TP)	False positive (FP)		
	-	False negative (FN)	True negative (TN)		
		All with disease (TP+FN)	All without disease (TN+FP)		
		Sensitivity= TP/(TP+FN)	Specificity= TN/(TN+FP)		

Disease		sease		
		+	<u>-</u>	
Test			False positive (FP) 900	
	-	False negative (FN) 100	True negative (TN) 89,100	
		All with disease (TP+FN) 10,000	All without disease (TN+FP) 90,000	All subjects (TP+FP+TN+FN) 100,000
		Sensitivity= TP/(TP+FN) 99%	Specificity= TN/(TN+FP) 99%	Prevalence (TP+FN)/ (TP+FP+TN+FN) 10% (9900+100)/100,000

			-	
		+	-	
Test	+	True positive (TP) 9900	False positive (FP) 900	
	-	False negative (FN) 100	True negative (TN) 89,100	
		All with disease (TP+FN) 10,000	All without disease (TN+FP) 90,000	All subjects (TP+FP+TN+FN) 100,000
		Sensitivity= TP/(TP+FN) 99%	Specificity= TN/(TN+FP) 99%	Prevalence (TP+FN)/ (TP+FP+TN+FN) 10% (9900+100)/100,000
		Dis	sease	
		+	-	
Test	+	True positive (TP) 990	False positive (FP) 990	
	-	False negative (FN) 10	True negative (TN) 98,010	
		All with disease (TP+FN) 1000	All without disease (TN+FP) 99,000	All subjects (TP+FP+TN+FN) 100,000
		Sensitivity= TP/(TP+FN) 99%	Specificity= TN/(TN+FP) 99%	Prevalence (TP+FN)/ (TP+FP+TN+FN) 1% (990+10)/100,000

Disease

		Di	sease		
		+	-		
	+	True positive	False positive	All test positive	PPV =
Test		(TP)	(FP)	(TP+FP)	TP/(TP+FP)
	_	False negative	True negative	All test negative	NPV=
		(FN)	(TN)	(TN+FN)	TN/(TN+FN)
		All with disease	All without disease	All subjects	
		(TP+FN)	(TN+FP)	(TP+TN+FP+FN)	
		Sensitivity=	Specificity=	Prevalence	
		TP/(TP+FN)	TN/(TN+FP)	(TP+FN)/ (TP+TN+FP+FN)	

		Di	sease	
		+	-	
Test	+ True positive (TP) 9900		False positive (FP) 900	PPV = TP/(TP+FP) 9900/10800 = 91.7%
	-	False negative (FN) 100	True negative (TN) 89,100	NPV = TN/(TN+FN) 89100/89200= 99.9%
		All with disease (TP+FN) 10,000	All without disease (TN+FP) 90,000	All subjects (TP+FP+TN+FN) 100,000
		Sensitivity= TP/(TP+FN) 99%	Specificity= TN/(TN+FP) 99%	Prevalence (TP+FN)/ (TP+FP+TN+FN) 10% (9900+100)/100,000

		Disease		
	+		-	
Test	+	True positive (TP) 990	False positive (FP) 990	PPV = TP/(TP+FP) 990/1980 = 50%
	-	False negative	True negative	NPV=TN/(TN+FN)
		(FN) 10	(TN) 98,010	98010/98020 = 100%
		All with disease	All without disease	All subjects
		(TP+FN)	(TN+FP)	(TP+FP+TN+FN)
		1000	99,000	100,000
		Sensitivity=	Specificity=	Prevalence
		TP/(TP+FN)	TN/(TN+FP)	(TP+FN)/ (TP+FP+TN+FN)
		99%	99%	1%
				(990+10)/100,000

Mechanisms of disease

Use of proteomic patterns in serum to identify ovarian cancer

Emanuel F Petricoin III, Ali M Ardekani, Ben A Hitt, Peter J Levine, Vincent A Fusaro, Seth M Steinberg, Gordon B Mills, Charles Simone, David A Fishman, Elise C Kohn, Lance A Liotta

Sensitivity	100%
Specificity	95%
Positive predictive value	94%

"These findings justify a prospective population-based assessment of proteomic pattern technology as a screening tool for all stages of ovarian cancer in high-risk and general populations."

Study base: 50 women with ovarian cancer, 66 from unaffected women or those with non-malignant disorders

More typical study base: in 1601 women referred because of family history, 11 cases of ovarian cancer diagnosed over 42 months (Bourne et al., 1993)

$$PPV = TP/(TP+FP) = 11/(80+11) = 12\%$$

Parameters of clinical utility are related to genotype frequency (g), disease frequency (p) and relative risk (R)

Genotype	Will develop disease	Will not develop disease	Total
+	sens*p	(1-spec)*(1-p)	g
-	(1-sens)*p	spec*(1-p)	1-g
Total	р	(1-p)	1

e.g. Sensitivity = R.g/(1 + g.(R-1))

Khoury et al., 1993 Yang et al., 2000

Genetic markers for COPD

Genetic marker	G	R	Sensitivity (%)	Specificity (%)	PPV
Homozygosity for PiZ	.0005	20	1.0	99.99	99.1
ABH nonsecretor	.25	1.5	33.3	75.4	6.7
Blood group A antigen	.45	1.3	51.5	55.3	5.7

Clinical utility, genotype frequency, disease frequency and relative risk

- Even when RRs are high, sensitivity and PPV are affected by the relative magnitude of disease and genetic marker frequencies.
- When the genetic marker is less frequent than the disease, PPV increases with increasing RR but sensitivity remains low.
- When the genetic marker is more frequent than the disease, sensitivity increases with increasing RR but PPV remains low.
- When marker and disease frequencies are equal, both PPV and sensitivity increase with increasing RR.

Issues in determining clinical validity

Issue	RR	Genotype frequency	Disease frequency
Study design	√	✓ & external data	External data
Selection bias	√	√	If not population-based
Statistical power	√	Precision?	Precision?
Publication bias	√	?	?
G-E interaction	√		
Information bias	√	√	
(G – analytic validity)	(G & E)	(G)	
Confounding	population stratification, LD, other		

Risk of breast cancer in BRCA1/BRCA2 mutation carriers at age 70

Study	Population	Gene(s)	Risk (%) by age 70 (95%CI)				
Large high-risi	k families						
Ford et al. 1994	IBCLC multicase families; 33 families	BRCA1	87 (72-95)				
Easton et al. 1997	2 BRCA2 families	BRCA2	80 (29-98)				
Relatives of ca	ises from population-based ca	ase-control studie	s or of cases				
from consecu	tive series of newly incident c	ases					
Struewing et al., 1997	Ashkenazi Jews, Washington DC, recruited by media – 1 st degree rels of 27 cases	BRCA1/BRCA2 [known founder mutations]	56 (40-73)				
Hopper et al., 1999	Australia, young probands – 1 st degree rels of 18 cases	BRCA1/BRCA2 [extensive sequencing]	40 (15-65)				
Antoniou et al., 2000	UK,– entire pedigrees of 12 cases	BRCA1 [extensive sequencing]	45 (22-76)				
Family data not used							
Satapogan et al., 2001	Ashkenazi Jews – 79 hospital based cases, and 62 controls	BRCA1 BRCA2	46 (31-80) 26 (14-50)				

Clinical utility

the net value of the information gained from a genetic test in changing disease outcomes

Gwinn 2004

Observational evidence & randomized control trials (RCTs)

- Differences in estimated magnitude of treatment effect between RCTs and observational studies are very common
- The directions of the differences are difficult to predict

(Britton et al., 1998; MacLehose et al., 2000; Ioannidis et al., 2001)